Mutual information based labelling and comparing clusters
نویسندگان
چکیده
منابع مشابه
Hard Clusters Maximize Mutual Information
In this paper, we investigate mutual information as a cost function for clustering, and show in which cases hard, i.e., deterministic, clusters are optimal. Using convexity properties of mutual information, we show that certain formulations of the information bottleneck problem are solved by hard clusters. Similarly, hard clusters are optimal for the information-theoretic co-clustering problem ...
متن کاملComparing network covers using mutual information
In network science, researchers often use mutual information to understand the difference between network partitions produced by community detection methods. Here we extend the use of mutual information to covers, that is, the cases where a node can belong to more than one module. In our proposed solution, the underlying stochastic process used to compare partitions is extended to deal with cov...
متن کاملCluster labelling using chi-square-based keyword ranking and mutual information score: a hybrid approach
Cluster labelling is a technique which provides useful information about the cluster to the end users. In this paper, we propose a novel approach which is the follow-up of our previous work. Our earlier approach generates clusters of web documents by using a modified apriori approach which is more efficient and faster than the traditional apriori approach. To label the clusters, the propose app...
متن کاملOn Classification of Bivariate Distributions Based on Mutual Information
Among all measures of independence between random variables, mutual information is the only one that is based on information theory. Mutual information takes into account of all kinds of dependencies between variables, i.e., both the linear and non-linear dependencies. In this paper we have classified some well-known bivariate distributions into two classes of distributions based on their mutua...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientometrics
سال: 2017
ISSN: 0138-9130,1588-2861
DOI: 10.1007/s11192-017-2305-2